Сложный процент в инвестициях

Содержание
  1. Особенности сложного процента
  2. 7. Формула расчета сложных процентов. Расчет процентов на банковский вклад при начислении процента на процент
  3. Онлайн калькулятор Расчет вклада с процентами
  4. Расчет процентов
  5. Расчётные формулы
  6. Понятие сложного процента
  7. Как это работает
  8. Что такое простой и сложный проценти чем они отличаются
  9. Что такое процент?
  10. Совокупный годовой темп роста (CAGR)
  11. CAGR Реальные приложения
  12. Сложные проценты
  13. Примеры задач на сложные проценты
  14. Примеры сложных процентов в инвестициях
  15. 2.1. Пример: инвестируем ежемесячно в банк под 8% (срок 10 лет)
  16. 2.2. Пример: инвестируем в банк под 8% (срок 20 лет)
  17. 2.3. Пример: инвестируем в ценные бумаги под 12% (срок 20 лет)
  18. Формула расчета сложных процентов
  19. Как сложный процент работает в инвестициях
  20. Формула сложных процентов
  21. Отличия от простого процента
  22. Сложный процент
  23. Формулы расчета
  24. Простой процент
  25. Сложный процент с начислением дохода 1 раз в год
  26. Сложный процент с начислением дохода чаще, чем 1 раз в год
  27. Вклад со сложным процентом

Особенности сложного процента

Сложной ставкой в экономике принято называть величину, образующуюся при сложении прибыли с основной суммой и участвующую в последующем создании нового дохода. То есть по окончании каждого отчётного периода (месяца, квартала, года) начисленный процент суммируется с вкладом. Полученная сумма выступает базисом для последующего образования прибыли.

Формула обязательно учитывает капитализацию процентов. Если ставка является годовой, то для её расчёта следует применять выражение S = P * (1 + i/100)n. В нём фигурируют следующие величины:

  • Общая сумма, включающая тело вклада и проценты по нему (S).
  • Первоначальный размер вклада (P).
  • Ставка в процентах за год (i).
  • Количество операций по капитализации за весь срок использования денежных средств (n).

Если вкладчик внесёт на счёт 50 тысяч рублей на 5 лет по ставке 10% в год, то его прибыль в виде срочной ставки будет равна S = 50000 * (1 + 10/100)5 = 80 525,5 рублей.

Бывают вклады, где доход начисляется ежемесячно. В них также закладывается сложная процентная ставка. Формула принимает вид S = P * (1 + i/(100*12))n. Показатель n здесь считается в месяцах.

Допустим, вклад, рассчитанный на 10 лет (120 месяцев), подразумевает ставку в 11% годовых и проценты по нему капитализируются ежемесячно. Тогда при взносе 10000 рублей доход по истечении установленного периода составит S = 10000 * (1 + 11: (100 * 12)120 = 298914,96 рублей.

Когда требуется определить прибыль за квартал, годовую ставку необходимо делить на 4, а вместо n указывать количество кварталов. В случае с полугодовыми периодами общий процент делится на 2, n равняется количеству полугодий.

При открытии долгосрочного вклада фактором, характеризующим его прибыльность, становится процентная ставка. Её можно узнать, выведя обратную формулу из выражения для определения сложного процента. % = (S / P)1/n — 1. Таким образом, чтобы 50000 рублей за 10 лет увеличились до 100000, нужно выбрать ставку, равную % = (100000: 50000)1/10 — 1 = 0,0718 = 7,18% годовых.

httpv://www.youtube.com/watch?v=embed/gKxS83q-a-M

7. Формула расчета сложных процентов. Расчет процентов на банковский вклад при начислении процента на процент

Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то расчет вклада с процентами выполняется по формуле сложных процентов.

S = K * ( 1 + P/100 * d/D )N

При расчете сложных процентов проще вычислить общую сумму с процентами, а потом вычислить сумму процентов (доход), вычтя сумму начального вклада (капитал).

Формула расчета процентов:

Sp = S — K

или

Sp = K * ( 1 + P/100 * d/D )N — K

Иногда удобнее использовать формулу расчета в таком виде:

Sp = K * (( 1 + P/100 * d/D )N — 1)

Пример 7.1 Принят вклад 100 тыс. рублей сроком на 90 дней по ставке 20% годовых с начислением процентов каждые 30 дней.

S = 100000 * (1 + 20/100 * 30/365)3 = 105 013.02
Sp = 100000 * ((1 + 20/100 * 30/365)3 — 1) = 5 013.02

Онлайн калькулятор
Расчет вклада с процентами

Расчет процентов

Sp =

Пример 7.2 Проверим формулу расчета сложных процентов для случая из предыдущего примера.

Разобьем срок вклада на 3 периода и сделаем расчет процентов для каждого периода, использую формулу простых процентов.

S1 = 100000 + 100000*20/100 * 30/365 = 101643.84
Sp1 = 100000 * 20/100 * 30/365 = 1643.84
S2 = 101643.84 + 101643.84*20/100 * 30/365 = 103314.70
Sp2 = 101643.84 * 20/100 * 30/365 = 1670.86
S3 = 103314.70 + 103314.70*20/100 * 30/365 = 105013.02
Sp3 = 103314.70 * 20/100 * 30/365 = 1698.32

Общая сумма процентов с учетом начисления процентов на проценты (сложные проценты)

Sp = Sp1 + Sp2 + Sp3 = 5013.02

Таким образом, формула расчета сложных процентов верна.

Расчётные формулы

Для каждого вида процентов существует своя формула, помогающая её определить. Прежде чем приступать к расчётам, следует разобраться в основных терминах, которые применяются в формулах:

  • Период начисления. Промежуток времени, к которому приурочена простая и сложная процентная ставка.
  • Капитализация. Суммирование начисленных процентов с основной суммой задолженности.
  • Наращение. Увеличение денежной суммы во времени, вызванное капитализацией.

Наращение и дисконтирование характеризуются соответствующими множителями. Первый рассчитывается как L = S (n) / S (0), второй как v = S (0) / S (n). S (0) соответствует первоначальной сумме кредита, S (n) равняется величине долга в конце срока n.

Чтобы узнать n (срок задолженности в долях от периода t), требуется разделить срок долга в днях (t) на фиксированный временной промежуток, к которому относится ставка (t*). Обычно t* равен 365 дней (иногда уменьшен до 360).

Зная необходимые параметры, можно высчитать процент (i), используя выражение i = (S (t*) — S (0)): S (0). В случае с прямыми процентами исходной базой для определения процентной ставки в течение всего срока долга на каждом периоде применения процента служит первоначальная сумма долга S (0).

На основе этих же данных можно определить значение учётной ставки по формуле d = (S (t*) — S (0)): S (t*). Учётной считается та ставка, которая используется Центробанком для предоставления заёмов коммерческим банком.

Если срок задолженности t состоит из k этапов, то чтобы при действующей схеме простых процентов узнать размер наращенного вклада по окончании срока, придётся применить выражение S (n) = S (0) * (1 + n1 * i1 + … + nk * ik).

Допустим, что в первом полугодии простой процент составляет 0,09 годовых, затем в следующем году он сокращается на 0,01, а в следующих двух полугодиях возрастает на 0,005 в каждом. Первональный взнос равен 800 у.е.

Получается, что S (0) = 800, n1 = 0,5, i1 = 0,09, n2 = 1, n3 = 0,5, n4 = 0,5. Высчитываем i2 = 0,09 — 0,01 = 0,08, i3 = 0,08 + 0,005 = 0,085, i4 = 0,085 + 0,005 = 0,09.

Подставляем полученные цифры в формулу и узнаём, что величина наращенного вклада в конце срока составит S (n) = 800 * (1 + 0,5 * 0,09 + 1 * 0,08 + 0,5 * 0,085 + 0,5 * 0,09) = 980,97.

httpv://www.youtube.com/watch?v=embed/9LUwD2ocQRs

Понятие сложного процента

Почему инвесторы утверждают, что можно создавать капитал даже с небольшими суммами? Откладывая 5 000 ₽ в месяц на счет, разве накопишь что-то существенное?

Во-первых, смотря что подразумевать под существенным. Кто-то хочет купить квартиру, а кто-то – велосипед, другие создают пассивный доход к пенсии. Во-вторых, на маленьких суммах действительно можно создать капитал. Инвесторы не врут, потому что они уже хорошо знакомы с магией сложного процента.

В статье я обязательно покажу, как это работает на цифрах и конкретных примерах. А пока вспомним свое детство. Зимой многие из нас лепили снеговика. Брали маленький комочек снега, катали его, и он вырастал в большой ком. То же самое происходит и с нашими деньгами, которые мы не кладем в тумбочку, а заставляем на нас работать. Помогает в этом сложный процент.

В 1-й год маленькая сумма прирастает маленьким доходом. На 2-й год доход будет начислен уже на “Сумма + Доход за 1-й год”, на 3-й – “Сумма + Доход за 1-й и 2-й годы” и т. д. Покажу на простом примере. Цифры условные, даны для простоты понимания процесса, к реальным депозитам не имеют никакого отношения.

Цифры увеличиваются в разы, если вы регулярно пополняете счет, но об этом еще впереди и обязательно на примерах.

Как это работает

Для того чтобы лучше понять принцип расчета, рассмотрим пример.

Предположим, что Вы положили 10 тысяч рублей под 10% годовых в банк. Год спустя на Вашем счету будет лежать сумма, равная 11 тысячам рублей.

Сумма = 10 000 + (10 000 * 10%)

Ваша прибыль за 1 год составила 1 тысячу рублей.

Вы решили не снимать проценты, а оставить их еще на один год – так же под 10% годовых. В итоге два года спустя на Вашем банковском счету получится 12 100 рублей.

Сумма = 11 000 + (11 000 * 10%)

Прибыль за первый год – 1 000 рублей – прибавилась к первоначальной сумме вклада – 10 000 рублей – и во второй год уже сама участвовала в создании новой прибыли.

Если полученные 12 100 рублей Вы решите оставить на третий год, алгоритм повторится и через три года на Вашем банковском счету будет уже 13 310.

А теперь представьте, что сумма первоначального капитала была не 10 тысяч рублей, а 100. А общий период инвестирования не 3 года, а 20 лет. Смотрите сами.

ГОД СУММА НАКОПЛЕНИЙ
3 121 000 рублей
5 146 410 рублей
15 379 750 рублей
20 611 591 рублей

Таким образом, можно выделить основные принципы действия сложного процента. Чтобы в полной мере оценить потенциал реинвестирования, нужны три условия:

  1. Размер первоначального капитала. Здесь все просто: чем больше денег мы кладем на счет первоначально, тем быстрее сумма будет расти.
  2. Длительный срок. Реальную работу сложного процента можно проследить только в очень большой перспективе. Пять или даже десять лет большой роли не сыграют.
  3. Процентная ставка. Логично предположить – чем она выше, тем больше шансов что-то накопить.

Поместив свободные средства на долгосрочный депозит с ежемесячной капитализацией, можно получать хороший пассивный доход.
Также отличным подспорьем в увеличении капитала послужит регулярное пополнение счета на определенную сумму, которая будет присоединяться к основному «телу» вложения и участвовать в дальнейшем накоплении процентов.

Что такое простой и сложный проценти чем они отличаются

Понятие простых и сложных процентов — один из самых важных уроков по финансовой грамотности, которые вы должны знать. Они встречаются в нашей жизни повсюду: от ежедневных покупок (кэшбек, бонусы) до инвестирования (проценты на депозит, дивиденды, комиссии и т.д.) и оказывают незаметное, но существенное влияние на ваш кошелек на длинной дистанции. Чтобы наглядно увидеть различия между простыми и сложными процентами, давайте рассмотрим примеры.

Допустим, вы открыли депозит 10000$ под 10% годовых, проценты начисляются раз в год. По схеме простого процента каждые 12 месяцев вы будете получать 1000$ прибыли, но она не остаётся на депозите и сразу же выводится. В итоге прирост прибыли будет выглядеть так:

Всё «просто» — каждый год плюс тысяча в карман. Простой процент используется в случаях, когда база начисления процентов не изменяется. Это могут быть специальные банковские депозиты, проценты по кредиту. Также простой процент используется, когда инвестор регулярно выводит прибыль — в каждый период времени работает первоначальная сумма.

Для сравнения пусть будет тот же депозит 10000$ под 10%, но банк в этот раз разрешает оставить прибыль на счёте. Вот что произойдёт с вкладом за 10 лет:

В первый год разницы нет — всё та же тысяча, но поскольку сумма на депозите теперь растёт, уже на втором году прибыль увеличивается: 2100$ вместо 2000$, за третий год 3310$ вместо 3000$ и так далее. За 10 лет доходность нашего депозита составила 159% вместо 100% когда мы выводили прибыль. Неплохая прибавка, не так ли? А вот что случится еще через несколько десятилетий:

Впечатляет! Чем дольше открыт депозит, тем сильнее работает эффект сложного процента — за 50 лет можно увеличить депозит не в 6, а более чем в 100 раз. Вот как это выглядит на графике:

без капитализации депозит растёт линейно, а с капитализацией — по экспоненте

Скачать график в Excel

Теперь киношные истории про забытые банковские счета, на которых накопились миллионы долларов выглядят вполне реальными :) Конечно, 50 лет это много, но правило сложного процента неплохо работает и на более коротких промежутках времени — всё зависит от доходности вклада. Если хочется заработать больше, стоит использовать более прибыльные способы инвестирования: акции, драгоценные металлы, криптовалюты, валютный рынок и так далее.

Думаю, суть понятна, теперь давайте пройдемся по математической стороне вопроса, а потом рассмотрим несколько типичных примеров задач.

Что такое процент?

Процент это сотая часть чего-либо

Неважно чего, это может быть:

  • Разделение общественных мнений в опросах: 35 % людей высказались за изменение закона.
  • Выделение элементов в химических реакциях: в результате окисления 40% бора из твердого состояния перешли в газообразное.
  • Показатели экономики: ВВП страны увеличилось на 6 % за год и т.д.

В математике проценты чаще всего используют в задачах для того, чтобы усложнить условие.

Единственная вещь в математике, которую нельзя измерять в процентах это вероятности. Но при этом ученики регулярно допускают ошибки и ответы в задачах на теорию вероятности пишут в процентах. Запомните, так делать нельзя.

Совокупный годовой темп роста (CAGR)

Совокупный годовой темп роста (CAGR) используется для большинства финансовых приложений, которые требуют расчета единого темпа роста за период времени.

Допустим, ваш инвестиционный портфель вырос с 10 000 до 16 000 долларов за пять лет; что такое CAGR? По сути, это означает, что PV = – 10 000 долларов США, FV = 16 000 долларов США, nt = 5, поэтому переменная «i» должна быть вычислена. Используя финансовый калькулятор или Excel, можно показать, что i = 9,86%.

(Обратите внимание, что в соответствии с соглашением о движении денежных средств, ваши начальные инвестиции (PV) в размере 10 000 долларов США показаны с отрицательным знаком, поскольку они представляют собой отток средств. PV и FV обязательно должны иметь противоположные знаки, чтобы найти «i» в приведенном выше уравнение)

CAGR Реальные приложения

CAGR широко используется для расчета доходности за периоды времени для акций, паевых инвестиционных фондов и инвестиционных портфелей. CAGR также используется для определения того, превышал ли управляющий паевым инвестиционным фондом или управляющий портфелем рыночную норму прибыли в течение определенного периода времени. Если, например, рыночный индекс обеспечил совокупную доходность 10% за пятилетний период, но управляющий фондом получил только 9% годовой прибыли за тот же период, это означает, что он отстал от рынка.

CAGR также можно использовать для расчета ожидаемых темпов роста инвестиционных портфелей в течение длительных периодов времени, что полезно для таких целей, как накопление средств на пенсию. Рассмотрим следующие примеры:

Пример 1.  Не склонный к риску инвестор доволен скромной годовой доходностью 3% по своему портфелю. Таким образом, ее нынешний портфель в 100 000 долларов через 20 лет вырастет до 180 611 долларов. Напротив, терпимый к риску инвестор, ожидающий годовой доходности 6% от своего портфеля, через 20 лет увидит, что 100 000 долларов вырастут до 320 714 долларов.

Пример 2:  CAGR можно использовать для оценки того, сколько нужно убрать, чтобы сэкономить для конкретной цели. Пара, которая хотела бы сэкономить 50 000 долларов в течение 10 лет на первоначальный взнос за кондоминиум, должна будет экономить 4 165 долларов в год, если они предполагают, что годовая прибыль (CAGR) составит 4% от своих сбережений. Если они готовы пойти на дополнительный риск и рассчитывать на среднегодовой темп роста 5%, им нужно будет экономить 3 975 долларов в год.

Пример 3:  CAGR также можно использовать для демонстрации достоинств инвестирования в более раннем, чем в более позднем возрасте. Если цель состоит в том, чтобы сэкономить 1 миллион долларов к выходу на пенсию в возрасте 65 лет, исходя из среднегодового роста в 6%, 25-летнему человеку для достижения этой цели потребуется откладывать 6 462 доллара в год. С другой стороны, 40-летнему человеку нужно будет сэкономить 18 227 долларов, что почти в три раза больше, чтобы достичь той же цели.

Среднегодовые темпы роста также часто возникают в экономических данных. Вот пример: ВВП Китая на душу населения увеличился с 193 долларов в 1980 году до 6091 долларов в 2012 году. Каков годовой рост ВВП на душу населения за этот 32-летний период? Темп роста «i» в данном случае составляет впечатляющие 11,4%.

Сложные проценты

РешитьСложная процентная ставка наращенияm=12m=4S=P·(1+im​)m·nсмешанным методомn

Современная стоимость Р величины S находится в случае сложной процентной ставки по формуле:
P=S(1+i)n

Примеры задач на сложные проценты

  1. Какой величины достигнет долг, равный P = 1 млн.руб., через n = 5 лет при росте по сложной ставке i = 15,5% годовых, если проценты начисляются раз в год, ежемесячно, поквартально и два раза в год?
    1) Сложные проценты начисляются раз в год:
    2) Сложные проценты начисляются два раза в год:
    S=1 000 000·(1+0,1552​)2·5 = 2 109 467,26 руб.
    3) Сложные проценты начисляются 4 раза в год (поквартально):
    S=1 000 000·(1+0,1554​)4·5 = 2 139 049,01 руб.
    4) Сложные проценты начисляются ежемесячно (12 раз в год):
    S=1 000 000·(1+0,15512​)12·5 = 2 159 847,20 руб.
  2. Через n = 5 лет предприятию будет выплачена сумма S = 1 млн.руб. Определить ее современную стоимость при условии, что применяется ставка сложных процентов i = 10% годовых.
    P=S(1+i)n
    P=1 000 000(1+0,1)5​ = 620 921,32 руб.
    Если проценты начислялись ежеквартально.
    P=S(1+im​)m·n
    P=1 000 000(1+0,14​)4·5​ = 610 270,94 руб.
  3. Определить современную стоимость S = 20 тыс.руб., которые должны быть выплачены через четыре года (n = 4). В течение этого периода на первоначальную сумму начислялись сложные проценты по i = 8 %годовых: а)ежегодно; б)ежеквартально.
    P=S(1+i)n
    P=20 000(1+0,08)4​ = 14 568,92 руб.
    Если проценты начислялись ежеквартально.
    P=S(1+im​)m·n
    P=20 000(1+0,084​)4·4​ = 14 570 руб.
  4. За взятые в долг деньги под сложную процентную ставку i=35% годовых должник обязан уплатить кредитору 30 тыс. руб. 1 июля 1997 г. Какую сумму необходимо уплатить должнику, если он вернет долг: а) 1 января 1997 г.; б) 1 января 1998 г.; в) 1 июля 1999 г.?
    Количество дней в 1997 году: T=365.
    а) 1 января 1997 г.;
    Эта дата ранее 1 июля 1997 г., поэтому речь идет о поиске P (S=30000). Количество дней между 1 января 1997 г. и 1 июля 1997 г. составляет d=181 дн..
    б) 1 января 1998 г.;
    Эта дата позже 1 июля 1997 г., поэтому находим S (P=30000). d1=01.07.1997 и d2=01.01.1998.
    в) 1 июля 1999 г.Количество лет между 1 июля 1997 г. и 1 июля 1999 г. составляет n=2 года.
    S=P·(1+i)n=30000·(1+0.35)2 = 54 675 руб.

Примеры сложных процентов в инвестициях

Можно смело сказать, что каждый рубль отложенный сегодня принесёт десятки рублей через 10 лет за счёт постоянного реинвестирования прибыли. Подобным образом разбогатели многие миллиардеры (Уоррен Баффет).

Обратите внимание, что эффект заметен со временем все сильнее и в конце кривая сложных процентов приобретает экспоненциальный характер, в то время как простые проценты растут линейно. Рассмотрим на примерах этот принцип

2.1. Пример: инвестируем ежемесячно в банк под 8% (срок 10 лет)

Если откладывать ежемесячно по 10 тысяч рублей «под подушку» или просто на банковский счёт, то через 10 лет (120 месяцев) сумма будет 1.2 млн рублей (120 умножаем на 10 тыс).

Если же откладывать эти деньги на банковский вклад под 8% годовых, то сумма по истечению 10 лет будет значительно больше: 1 851 738 рублей. Чистый доход от процентов 641 738 рублей (чуть больше 50% за все время).

Новички по ошибке могут получить неправильную сумму, если просто прибавить 8% к отложенной сумме, но это неверно. Сложный процент можно посчитать лишь на онлайн калькуляторе или самостоятельно с помощью длительных вычислений.

Расчёты на калькуляторе сложных процентов:

Выписка по балансу:

Примечание

В некоторые периоды можно найти ставку на вкладах гораздо выше 8% и доход был бы в таком случае был заметно больше.

2.2. Пример: инвестируем в банк под 8% (срок 20 лет)

Теперь увеличим срок нашего инвестирования с 10 лет до 20 лет. Мы будем также откладывать по 10 тысяч рублей и всю полученную прибыль реинвестировать. Теперь по истечению срока сумма будет 5 938 760 рублей вместо 2 400 000. Чистый доход от процентов 3 528 760. Эта сумма больше всех суммарных вложений в 1.5 раза (150% прибыли за все время)!

Это наглядный пример того, что чем больший период мы рассматриваем, тем заметнее будет действие сложных процентов.

2.3. Пример: инвестируем в ценные бумаги под 12% (срок 20 лет)

Последний пример депозита. Откладываем по 10 тысяч рублей ежемесячно на протяжении 20 лет, но теперь мы инвестируем деньги в акции и небольшую часть в облигации.

Как показала реальная история, такой инвестиционный портфель в среднем за год приносит 12% с учётом дивидендов от акций при самой простой стратегии «купи и держи».

Итого, сумма на конец срока: 9 999 681 рублей. Чистый доход 7 589 681 рублей. И это не результат везения, не фантастика, а очень реальные цифры дохода, которые доступны каждому лицу. По факту можно даже получить и больше и даже за более короткий срок, если выйти с рынка на его пике, а докупиться в конце цикла падения, но для подобных «маневров» необходимы основы трейдинга и немного времени на совершение торговых операций.

Хочу подчеркнуть, что мы рассмотрели реальные варианты без каких-либо везений и прочее. Такого результата добьется каждый, кто просто вложит в ценные бумаги и не будет дергаться и пытаться что-то ещё сделать. Такая стратегия называется: пассивное индексное инвестирование.

Примечание

При инвестировании в зарубежные акции доход был бы ещё больше (где-то в два раза), поскольку по статистике рубль обесценивается к доллару примерно на 100% каждые 20 лет.

Также важно откладывать в начале как можно больше. Это сильно повышает будущую доходность

Теперь, понимая силу сложных процентов, поговорим о том, во что лучше всего вложить деньги, чтобы получать пассивный доход. Какие конкретно варианты инвестирования существуют, каковы их риски и преимущества можно прочитать:

Формула расчета сложных процентов

Договоримся обозначать величины так:

  • Д – начальная сумма, вложенная в банк, или взятая в кредит;
  • С – конечная сумма;
  • n – количество периодов начисления процентов. Таким периодом быть год, квартал, месяц – в соответствии с договором;
  • X – процентная ставка, за период начисления процентов. Не ставка за год, а именно за тот период, за какой происходит начисление процентов. Например, в договоре указано 12% годовых, а капитализация происходит каждый месяц. Значит, Х в нашем случае равно 1.

Значит, учитывая начисление процентов, мы имеем в конце:

  • первого месяца С= Д+Д*X/100,
  • второго С= Д+Д*X/100+( (Д+Д*X/100)*X/100),
  • третьего С=Д+Д*X/100+( (Д+Д*X/100)*X/100)+( Д+Д*X/100+ (Д+Д*X/100)*X/100)*Х/100.

Таким образом, проведя математические преобразования, формулу сложных процентов по кредиту можно представить в общем случае как:

С= Д*(1+ X/100)n

Внимание! n в данной формуле означает степень числа. Видим, что временная составляющая – количество периодов начисления процентов, является степенью

Это говорит о том, что с течением времени конечная сумма С будет расти все более высокими темпами

Видим, что временная составляющая – количество периодов начисления процентов, является степенью. Это говорит о том, что с течением времени конечная сумма С будет расти все более высокими темпами.

Можно рассчитать, как увеличится вклад при депозите 100 000 под 6% годовых с ежегодной капитализацией на разный срок.

Подставляем в формулу значения для 3 лет, это: 100000*(1+0,06)3 =119101,6 рублей,

для 10 лет: 100000*(1+0,06)10 =179084,74.

Заметно, что в первые годы вклад рос незначительно, среднегодовой доход за первые три года составил 6366,66 рублей.

Если разделить сумму дохода, полученную после 10 лет накопления, то получим большую ежегодную сумму – 7908 рублей.

Еще один интересный расчет – какова разница результата, если рассчитывать итоговую сумму по правилу простого процента в этом же примере? Получаем такие данные:

  • 3 года – 100000+(100000/100*6)*3= 118000 рублей.
  • 10 лет – 100000+(100000/100*6)*10 = 160000 рублей.

Можно сделать вывод, что при одной и той же базовой процентной ставке депозит под сложный процент выгоднее, а кредит затратнее.

И прослеживается большая зависимость от срока размещения – чем он больше, тем заметнее разница по сравнению с простым процентом.

Дополнительно ознакомьтесь с кратким видео о том, как производится расчет по формуле сложных процентов:

httpv://www.youtube.com/watch?v=embed/EEWnFs6Nu10

Как сложный процент работает в инвестициях

Весьма доходные сложные проценты в инвестировании, например, в сегменте, онлайн, встречаются и не так редко, как это было 4, а то и 5 лет назад. Сложный процент максимально выгодный на длинной дистанции: что касаемо банков, то для депозитов на 5-10 лет, для проектов со среднесуточным начислением от 3% и работой вклада на бессрочной основе. Если самостоятельно сложно считать, то в сети множество калькуляторов, за пару секунд рассчитывающие размер сложных процентов и то, что получите на руки по истечению срока. Среди остальных инвестиций, где используется эта математическая формула начисления, можно выделить такие:

  • облигации и вложение купонного дохода на очередной срок после даты N для выплат прибыли;
  • дивидендные акции, приобрести которые можно через брокера, что является членом НАУФОР и выходит на разные биржи.

Правило простое: например, у вас есть пакет акций на 10 тыс. рублей и в год вы получаете 10%. За 10 лет вклад «окупится», если будете забирать прибыль, но, если примите решение аккумулировать ее, средняя окупаемость сократится до 7 лет.

Формула сложных процентов

Теперь давайте приступим к самому важному. Узнаем наконец-то, как всё это рассчитывается

Формула имеет следующий вид:

где

  • К — сумма вклада,
  • i — годовая % ставка, деленная на 100,
  • n — число периодов начислений.

Воспользуемся данной формулой на практике.

Пример 1. Вы положили на депозит в банке 60 000 рублей под 12% годовых на 8 лет. Узнать, какую сумму вы получите через 8 лет, можно с помощью вышеупомянутой формулы:

S = 60 000 * (1 + 12/100)^8 = 148 557 руб.

Размер итоговой прибыли может зависеть от различных факторов. Например, от того, как начисляются проценты ежемесячно или раз в год. Тогда формула немного видоизмениться.

Пример 2. Пусть условие остается прежним из Примера 1, но начисления будут происходить каждый месяц.

S = 60 000 * (1 + 12/100/12)^96 = 155 956 руб.

Думаю, понятно, откуда появилось число 96 — это 8 лет умноженные на 12 месяцев. А процентную ставку i необходимо ещё разделить на 12 (месяцев). Тогда формула для наращения процентов m раз в году примет вид:

где m = 365, при ежедневном начислении прибыли, m = 12 — ежемесячном, m = 4 — ежеквартальном, m = 2 — полугодовом.

Как видно из примеров, чем чаще начисления, тем конечный доход будет выше

Только важно помнить главное правило — сложные % тогда будут приносить реальную пользу, когда вы не будете снимать получаемую с них прибыль

Отличия от простого процента

Банки рассчитывают проценты по вкладам и по кредитам двумя основными способами: по формуле простых, либо по формуле сложных процентов.

Если процент всегда берется от первоначальной суммы – это простой процент.

Действительно, совсем несложно вычислить его по формуле: известная сумма делится на 100 и умножается на количество временных периодов, за которые будут начислены проценты. Говоря просто, за месяц вы всегда получаете одинаковое число, и одинаковое количество денег.

Иное дело, когда в расчет процентов для определения результата накоплений или задолженности вместо первого числа в этой формуле стоит не та сумма, которая была внесена или получена первоначально, а каждый раз другая.

Это возможно тогда, когда начисленная за первый период сумма денег автоматически прибавляется к сумме вклада или кредита. Базовая сумма становится больше, значит, и процент от нее вырастет.

С каждым периодом капитализации, если речь идет о вкладе, или сроком начисления процентов, если речь о кредите, лавинообразно нарастает процент.

Сложный процент

Попробуем разобраться в том, что такое сложный процент.

Представим себе ситуацию, что Петя положил в банк какую-то сумму под процент, например 10 тысяч под 10 процентов годовых.

Тогда каждый год сверх суммы будет начисляться некая прибыль. Посчитаем, сколько прибыли получит Петя в первый год:

10000*0,1=1000 рублей. Однако это прибыль только за первый год. За второй год прибыль будет процентом от уже накопившейся суммы, то есть:

(10000+10000*0,1)*0,1=11000*0,1=11000. На третий год уже эта сумма прибавится к прошлым 11000 рублей, а процент будет начисляться на другую сумму. Такая ситуация будет повторяться 10 раз подряд.

Каждый раз придется начинать вычисления заново, что крайне долго и неудобно, иногда ученики составляют целые таблицы со значениями процентов. Особенно неудобны такие расчеты в условиях банковских расчетов, когда все нужно делать быстро. Поэтому была выведена простая формула сложного процента.

Формулы расчета

Раз есть сложный, значит, есть и простой процент. Несправедливо, если мы не разберем младшего брата нашего героя.

Простой процент

Простой процент каждый расчетный период (месяц, квартал, год) начисляется только на первоначальную сумму. Никакого эффекта “снежного кома” он не дает. Сумма увеличивается медленно.

Формула расчета:

SN = SП * (1 + % ст * N), где

  • SN – сумма в конце периода N;
  • SП – первоначальная сумма капитала;
  • % ст – процентная ставка (доход);
  • N – расчетный период.

Формула справедлива, если речь идет о начислении дохода раз в год. Например, положили на счет 100 000 ₽ под 10 % годовых на 10 лет. В конце срока получите: 100 000 * (1 + 0,1 * 10) = 200 000 ₽.

Более 100 крутых уроков, тестов и тренажеров для развития мозга

Начать развиваться

В реальной жизни понятие простого % применяется, например, в экономических расчетах по банковским вкладам без учета капитализации. В договоре обязательно указывается годовая процентная ставка. Проценты начисляются за каждый день нахождения денег на вкладе. А получать доход вкладчик может ежемесячно, ежеквартально или раз в год.

В этом случае формула примет вид:

SN = SП * (1 + % ст * Д / 365), где

Д – количество полных дней нахождения денег на депозите.

Например:

  1. Положили на счет 100 000 ₽ под 10 % годовых на 91 день. В конце срока получите: 100 000 * (1 + 0,1 * 91 / 365) = 102 493,15 ₽.
  2. На 180 дней: 100 000 * (1 + 0,1 * 180 / 365) = 104 931,51 ₽.
  3. На 2 года (730 дней): 100 000 * (1 + 0,1 * 730 / 365) = 120 000 ₽.

Сложный процент с начислением дохода 1 раз в год

По методу сложных процентов при начислении дохода 1 раз в год будущая сумма определяется по формуле:

SN = SП * (1 + % ст)N

Пример. В банк положили 100 000 ₽ под 10 % годовых на 2 года. Будущая стоимость вклада составит: 100 000 * (1 + 0,1)2 = 121 000 ₽.

Сложный процент с начислением дохода чаще, чем 1 раз в год

Доход может начисляться ежемесячно, ежеквартально или 2 раза в год. Формула меняется:

SN = SN * (1 + % ст / К)N*К, где

К – частота начисления дохода (12, 4 или 2 раза в год).

Пример. В банк положили 100 000 ₽ под 10 % годовых на 2 года с ежемесячным начислением процентов. Будущая стоимость вклада составит: 100 000 * (1 + 0,1/12)24 = 122 039,1 ₽.

Вклад со сложным процентом

Рассматривая расчёт сложных процентов, подразумевают, что к депозиту после каждого периода начисления процентов (так называемого периода капитализации) прибавляется полученный доход.

Процент во втором периоде будет начислен на сумму плюс процент за первый период, в третьем периоде расчетная сумма уже увеличится, и процент тоже – он начисляется от суммы, увеличенной в результате прибавления двух разных процентов, причем второй будет выше первого.

Процент начисляется на процент, и каждый последующий период капитализации принесет доход выше, чем он был в прошлые периоды.

Длительность срока размещения денег при использования вклада с расчетом накоплений по формуле сложных процентов по вкладу играет ключевую роль. Чем дольше лежат деньги, тем выгоднее вклад.

Хитрость в том, что в линейке банковских вкладов вклады с капитализацией всегда предлагаются под более низкий процент, чем другие срочные вклады.

График погашения кредита, рассчитанного с применением формулы сложного процента зеркально отражает расчет процентов по вкладам с аналогичными условиями: чем больше срок кредита, тем интенсивнее растут проценты на его обслуживание.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Знай и умей
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: